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ABSTRACT 

Let L be a Lie algebra over a field K which acts as K-derivations on a K-algebra 
R. Then this action determines a crossed product R • U(L) where U(L) is the 
enveloping algebra of L. The goal of this paper is to describe the Jacobson 
radical ofR • U(L) for L # 0. We are most successful when R is a p.i. algebra 
or Noetherian. In more general situations we at least obtain upper and lower 
bounds for J(R • U(L)) which are ideals extended from R. Furthermore, we 
offer an interesting example in all characteristics of a commutative K-algebra 
C which admits a derivation g such that C is g-prime but not semiprime. 

Let L be a Lie algebra over  the c o m m u t a t i v e  ring K, such that  L is a free K- 

module,  and let U(L)  denote  its universal  enveloping algebra. I f  R is a K- 

algebra and  L acts on R as K-der ivat ions ,  then this act ion de te rmines  in a 

natural  manne r  a ring generated by R and U(L).  This K-algebra  is denoted  by 

R • U(L)  and is called the crossed product  o f  R by U(L).  The a im o f  this pape r  

is to describe the Jacobson  radical J ( R  • U(L))  when L =g 0. Our  ma in  result, 

Corol lary 3.5, asserts that  i f R  is a p.i. algebra, then J ( R  • U(L))  = N .  U(L)  

where N is the largest L- invar iant  nil ideal o f R ;  moreove r  J (R  • U(L))  is nil in 

this case. By a somewhat  easier argument ,  we obtain  the same conclusion for  R 

any Noe ther ian  algebra. 

For  an arbi t rary  algebra R,  we find upper  and  lower bounds  for J (R  • U(L))  
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which are ideals extended from R. For example, if K has characteristic 0, we 

prove that 

N • U(L) c_ J(R • U(L)) c_ M • U(L) 

where N is the prime radical of  R and M is the largest L-stable ideal contained 

in J(R) (Corollaries 2.4 and 3.10). Furthermore M can be replaced by the nil 

radical of  R if some 0 ÷ x E L acts as an inner derivation on R. 

Previous results on this problem were of two kinds. The first, when L acts 

trivially, include Amitsur's well-known theorem [2] on polynomial rings R [x] 

and Irving's theorem [10] on enveloping algebras U(L) for L a Lie algebra 

which is also a finite K-module (here R = K). We remark that the latter 

theorem now has a very short proof [3]. For the second kind, when the action 

of L is non-trivial, much less is known. In fact only the rank one case, where 

L = Kx and R • U(L) = R[x; 6] is an Ore extension, has been studied. In this 

case, the radical was determined for R a commutative ring in [7] and for R 

Noetherian in [11]. By iteration, the result of [11] extends to solvable Lie 

algebras L. 
Thus our results generalize those of [7, 10, 11] to actions of arbitrary Lie 

algebras. 
In addition, we study a rather interesting example, namely the countable- 

dimensional exterior algebra E over an arbitrary field K. We show (Proposi- 
tion 1.3) that E can be given a derivation 6 such that E is fi-prime. Since E is 
not semiprime, this therefore answers a question of [8]. By taking the center of 

E, one even obtains a commutative example. It follows that S = Ely; 6] is 
prime and, since E is a p.i. algebra, J(S) = N[y; 6] is a nil ideal. Thus J(S) 
gives a natural example of a prime nil ring which is generated by two elements. 
Moreover, E is a Jacobson ring, whereas S is not (Proposition 2.3). The latter 

example in characteristic 0 is new; an example in characteristic p ~ 0 is given 

in [6]. Finally E and S have interesting growth properties. Although E is locally 

finite, S does not have polynomial growth even though it is generated by two 

elements. 
We now describe what we mean by a crossed product, following [ 12, Chapter 

1, Section 7]. First note that since L is free over K, the Poincar6-Birkhoff-Witt 

theorem holds, and thus the standard monomials in a K- basis (xi } for L form a 

basis for U(L). A K-algebra S containing R is called a crossed product of R by 

U(L), and writen R • U(L), provided there is a K-module embedding of L into 

S, x -~ ~, such that for all x, y ~ L, r E R, 
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(i) Xr - rX = 5~(r)ER, where 5 ~ D e r x ( R ) .  

(ii) .~y - ~ = [x, y] + t(x, y), where t : L X L ~ R .  

(iii) S is a free right (and left) R-module with the standard monomials in 

{x~} as basis. 

Although crossed products are defined in a somewhat different manner in 

[5], the two notions are equivalent. Note that if the cocyle t ~-0, then R • U(L) 
becomes the more familiar skew enveloping algebra, or differential polynomial 

ring, written R ~- U(L ). 

In fact, the results of  Section 2 are valid for more general algebras than 

crossed products; we thank A. Joseph for pointing this out to us. A K-algebra S 

is called a Lie extension of R by L,  and written R (L) ,  provided S is generated 

by a subalgebra R and a subspace L such that for all x, y E L, r E R, 

(i) xr - rx = d~(r)ER, where 5~ ~DerK(R), 

(ii) xy - yx  E L + R. 

Note that L is not assumed to be a Lie algebra here. In particular a homomor- 

phic image of  a crossed product R • U(L) is a Lie extension. 

§1. L-prime rings 

In this section we briefly discuss L actions on rings. We are especially 

concerned with the ideals which are L-stable. To be precise, let L be a vector 

space over K, let R be a K-algebra and let 5 : L - -  Derx R be any map from L 

into the algebra of  K-derivations of R. Thus each x ~ L determines a deriva- 

tion 5x o fR .  Note that we do not assume here that L is a Lie algebra or that ~ is 

a Lie homomorphism. An ideal I of  R is said to be L-stable or L-invariant if 

6~(I) c_ I for all x E L. Obviously this can be checked one derivation at a time. 

The following result is known; however our proofs of  (i) and (ii) seem easier 
than others in the literature. 

LEMMA 1.1. Let char K = O. Then L stabilizes 

(i) the nil radical of  R,  

(ii) the sum of  all nilpotent ideals o f  R,  

(iii) the prime radical of  R,  

(iv) each minimal prime o f  R.  

PROOF. Let 8EDerr (R)  and let A<]R. Then A + d(A)<IR since rd(a)=--- 

g(ra) modA and g(a)r=~g(ar) modA for all r E R ,  a EA.  

(i) For this we need only show that ifA <3R is nil, then so is A + 5(A). In fact 
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we need only check that 0(A) is nil modulo  A. Let a CA and say a" = 0. Then 

we have easily 

0 = O"(a")=n! (Oa)" m o d A .  

Since char K = 0 we conclude that (0a)" CA as required. 

(ii) Here we must show that if A<IR is nilpotent, then 0(A) is nilpotent 

modulo  A and the same argument works. Indeed if A" = 0, then 

0 = O"(A")=--n! (OA)" m o d A ,  

so (0A)" _C A. 

(iv) This is proved in [8, Proposi t ion 1. I] and (iii) is immedia te  from either 

(ii) or (iv). 

The standard counterexample in characteristic p > 0 is as follows. Let 

char K -- p and set R = K[x]/(xP). Then 0 = O/Ox is a derivation of  R and all 

four of  the ideals discussed in Lemma 1.1 are equal to xR which is not 0-stable. 

In fact, R is a 0-simple ring, that is it has no nontrivial 0-stable ideals. 

In view of  the subject o f  this paper, it is natural to ask whether JR is 

necessarily L-stable. The answer is "no" in any characteristic. Indeed let 

R = K[x]x be the set o f  all rational functions f (x) /g(x)  with g(0) :# 0. Then 

O = O/Ox is a derivation of  R but  JR = xR is not 0-stable. 

Again let L act on R.  We say that R is L-pr ime if for all L-stable ideals 
0 ~ A, B we have AB v~ O. It is clear that i f R  is prime then it is L-prime.  For  

the converse we know at least 

LEMMA 1.2. Let L act on R.  

(i) I f  R is semiprime then every annihilator ideal is L-stable. 

(ii) l f  R is semiprime and L-prime, then it is prime. 

(iii) Assume R has a unique largest nilpotent ideal and that char K = 0. I f  R 

is L-prime then it is prime. 

PROOF. (i) Say A<IR and B = rR(A ). Since 0(A 2) C A and AB = 0 we have 

0 = 0(AZB) = AZ0(B) _D (A0(B)) 2 

so 0(B) c_ rR(A)  = B .  

(ii) Let A, B<IR with AB = 0. We may assume first that B = rR(A ) and then 

that A = 1R(B). But then A and B are both L-stable so, since R is L-prime,  one 

o f  A or B must  be zero. 
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(iii) I f N  is the unique largest nilpotent ideal of  R then, by Lemma 1. l(ii), N 

is L-stable. But R is L-prime and N" = 0 so N -- 0. Therefore R is semiprime 

and hence prime by (ii). 

Part (iii) of course always applies when R is right Noetherian. We note 

however that (iii) is false in characteristic p > 0. The ring R = K[x]/ (x  ~) with 

O = O/Ox is an appropriate counterexample. This also shows that the semi- 

prime hypothesis is required in (ii). An example for this valid in all characteris- 

tics, including characteristic zero, is as follows. This answers a question in [8]. 

PROPOSITION 1.3. Let  K be a f ie ld  and let E be the Grassmann (exterior) 

algebra over K generated by the countably many elements x~, x2, x3, . . . • Then 

there exists a K-derivation O of  E with O(xi) = xi + ~ for all i. Furthermore for this 

O, E and its center Z(E)  are both O-prime rings which are not semiprime. 

PROOF. We first observe that 0 defines a derivation on E. To this end let 

F = K(X~, X2, X 3 , . . . )  be a free K- algebra and map F onto E via Xi --- x~. Then 

by definition of  E, the kernel of  this map is the ideal generated by ~ and 

XgXj + XjX~ for all i , j .  Now 0(X~) = Xi + 1 certainly extends to a derivation on F 

and thus 0 will yield a derivation of  E provided that the ideal of  relations is O- 

stable. But 

and 

= six,+,  + xi+ x, 

0(x, xj + xjx,) = (x,+,xj + xjx, +,) + (x, xj +, + xj+,x,)  

so this fact is clear. 
We can now proceed as in [8, Example 1.6]. For convenience, if i~ < iz < 

• • • < in we write xi, xi2" • "xi. = Xs where S is the set {ii, iz, . . . ,  i ,} .  Then the 

collection of these monomials Xs yields a K-basis for E. We call a monomial of  

the form x~xi + lxi + 2" • .xi +,, a consecutive segment starting at i. We note that 

any nonzero ideal I of E contains a consecutive segment starting at i = 1. 

Indeed let 0 ~ a = Z ksxs ~ I and let U = { 1, 2 . . . . .  m } be chosen with U _ S 

for all Xs in the support ofa .  Furthermore let Tbe  of minimal size with kr  ~ O. 

Notice that i f x s  is in the support of  a and Xs" xu \ r  ÷ O, then S must be disjoint 

from U \  T s o  S c_ Tand  hence S = T. Thus kTxu = + a ' X u \ T ~ I .  

Next we observe that if s >___ 2n then 

( * )  O n ( x i x i + l  - • . X i + n _ l ) . X i + n + l X i + n +  2- • . X i + s _  1 = X i + l X i +  2- • , X i + s _ l .  
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For this we may assume for convenience that i = 1 and proceed by induction 

on n. We wish to consider 

f l  = O n ( X l X 2  • ° . X n )  , Xn + 2Xn + 3 ° • ° Xs  , 

Since O ( x ~ x 2 .  • • x , )  = x ~ x 2 .  • • x ,  _ ~. x ,  + ~ we have 

= O n - l ( X l X  2 ,  • , X n _  l ' x n + l ) ' x n + 2 x n + 3  ° • , X s .  

But s > 2n implies that any further derivative of x,+~ will annihilate 

x,  +2x, +3. • "xs. Thus in computing fl we may essentially view x, + ~ as a 

constant. This yields 

P = 0"- ~(x~x2 • • .x , -O.x,+~x,+2.  • . x s  

and the fact follows by induction on n. 

As a consequence of the two previous paragraphs we see that any nonzero 0- 

stable ideal I of E contains a consecutive segment starting at i for all i >= 1. In 

fact the i = 1 case has already been proved and formula (,) shows that i implies 

i + 1 .  

It is now a simple matter to prove the result. IfA and B are nonzero 0-stable 

ideals of E, then A contains x ~ x 2 .  • . x , _ ~  for some n >= 2 and B contains 

x.x,_ l" • .xt for some t >_- n. Thus A B  ~ 0 and E is 0-prime. Hence so is Z(E) 

since O acts on Z(E) and since any 0-stable ideal of Z(E) extends to one of E. 

Finally x l x 2  is a central element of square zero so neither E nor Z(E) is 

semiprime. 

In the preceding example, every annihilator ideal is nilpotent. In fact, we do 

not know of an L-prime ring which does not have this property. 

§2. The lower bound 

We now formally begin our work on J ( R  • U ( L ) ) .  In this section we obtain a 

lower bound for this ideal, in the more general setting of Lie extensions R (L).  

Indeed we show that if N is an L-stable ideal of R which is generated by 

nilpotent ideals, then the extended ideal N ( L )  is nil and hence contained in 

the Jacobson radical. 

We fix some notation. Let S = R (L)  be a Lie extension of R by L over K. If 

X is a K- subspace of L, then for convenience we write 

x ( n ) =  K - k -  X " } -  X 2  + . . .  + X n = ( K  + X)". 
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Furthermore i f  (a~, a 2 . . . .  at) is a t-tuple o f  nonnegative integers, then we 

denote the tuple by its corresponding letter a and we write l a I = a~ + a2 + 

• • • + a,. Recall that  i f x 6 L  then xr = rx + CSx(r) for all r 6 R .  

LEMMA 2. I. Let X be a K-subspace o f  L and let V be a K-subspace o f  R .  

Define V, inductively by Vo = V and 

v,+, = v, + Z ~x(V,). 
x E X  

(vx~m~) ' c_ y. sva,  vo,. . . va.  
lal =rot 

PROOF. First observe that  for any x E X 

~x(Va, Vo,''" VJ C_ Y~ Vol+bVo,+~... Vo,+b,. 
Ibl~l  

Hence since xr = rx + Ox(r) for all r ~ R  we have 

Vo, Va,''" V J  C_ Z SVa,+~,Vo,+~... Vo,+b,. 
I b l - I  

It now follows by induction on m > 1 that 

(**) vo, v o , . . . v o , x  ~m~c- Z svo,+~,v~,+b~.. .v~,+~. 
Ib l -m 

Finally we prove the lemma by induct ion on t. The case t = 1 follows from 

(**) with s = 1 and am -- 0. I f  the inclusion holds for t - 1 then 

( v ,  Vm~) ' C Z svo,  vo,. . . V a , _ , ( V o ~ ) .  
lal  - m ( t  - 1) 

Another  application of  (**) with s = t yields the result. 

The next theorem extends one direction of  [7, Theorem 3.3] from the case o f  

L = Kx to arbitrary L.  Given our  L e m m a  2.1, essentially the same proof  in [7] 

can be used. 

THEOREM 2.2. Let N be an L-stable ideal o f  R generated by nilpotent 
ideals. Then N ( L ) is a nil ideal o f  R ( L ). 

PROOF. Since Nis  L-stable we know that N ( L  )<~S = R (L  ). Let a E N ( L  ). 

Then there exists a finite dimensional  subspace V o f N  and a finite dimensional  

Then for all m, t >= 1 
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subspace X of L with a E VX (') for some m > 1. It suffices to prove that VX (m) 

is nilpotent and we use the notation of the preceding lemma. It is clear that 

V2,, - 1 is finite dimensional and that V2m - ~ C_ N since N is L- stable. Thus since 

N is generated by nilpotent ideals there exists I<IR with V2,, _ 1 -- I and P = 0. 

Set t = 2s. We claim that Va, Va , " "  Va, = 0 if l al  = mt.  Indeed, since 

m t =  l a I = al + a2 q- • • • -'k at, there are at most s = t/2 of the a~'s which are 

_>- 2m. Thus the remaining Va, are contained in I and hence 

V~,V~: . . .V , ,C_P=O.  

Lemma 2.1 now implies that (vx(m)) t ~ -  O. 

This result has numerous consequences. We start with an example in 

differential polynomial rings analogous to the skew polynomial example in 

[13]. A characteristic p > 0 example is contained in [6]. 

PROPOSITION 2.3. Let E be the Grassmann algebra over K generated by the 

countably many  elements xl, x2, x3, . . . and let 6 be the derivation o f  E defined 

by 6(x~) = x~ + i. Then E is a Jacobson ring but the Ore extension S = E[y; 6] is 

not. Indeed S is pr ime but J ( S  ) = N[y; 6 ] ~ 0 where N is the pr ime radical o fE .  

PROOF. Since E / N  = K, N is the unique prime of E and E is clearly 
Jacobson. We know by Proposition 1.3 that 6 defines a derivation on E and 
that E is 6-prime. Thus, by [5, Theorem 2.6], S = E[y; 6] is prime. Further- 
more since N is 6-stable and generated by nilpotent ideals, Theorem 2.2 

implies that N[y; 6] ___ J(S) .  Finally 

S/N[y;  61 ~-- (E/N)[y;  61 ~-- K[yl  

is semiprimitive so we conclude that N[y; 6] --- J(S) .  

Note that J ( S )  is a prime nilring generated by xt and y. 

We remark that the K-algebra S = Ely;  6] above has rather interesting 

growth properties. Since the argument is essentially a modification of  the work 

of [14], we just sketch it here and refer the reader to that paper for complete 

details. Note first that S is a finitely generated K- algebra with generating vector 

space V = K + KXl + Ky. It follows easily that V" has a k-basis consisting of 

all monomials of  the form x~,x~2. • • x ~ y  b with a~ = 0 or 1, b > 0 and Z~ ia~ + 

b < n. By adding an additional parameter c, we see that d, = dimx V ~ is equal 

to the number of infinite tuples (a~, a2,. • •, a k , . . . ,  b, c ) o f  integers with ag --- 0 
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or 1, b > 0, c > 0 and ~ ia~ + b + c = n .Thus  the generating function for 

these dimensions is given by 

z~ d ~  ~= fi  ( 1 + ~ ' ) ' ( 1 + ~ ' + ( 2 + ' " ) 2  
n = 0  i ~ l  

=(1--()-2. fi (l+(i). 
i ~ l  

To obtain a lower bound for dn, we note that the sum of the positive integers 

< v/n is at most n. Thus Zi=~- iai = < n for all choices of  ai = 0 or 1 and hence 

d~ > 2  ~--~. This shows that S does not have polynomial growth so 

GKdim S = ~ even though GKdim E = 0 since E is locally finite dimen- 

sional. In the other direction we again fix n and note that at 4~ 0 implies that 

i _-< n. Furthermore we have 

n > Y, ia~>=x/-ff-Y, at 
i = x / K -  i ~  

so at most x/~ of the a, in the range v/n _-< i =< n can be nonzero. It therefore 

follows that at most 2v~n of  the ai in the range 1 =< i _-< n can be nonzero and 

this yields a crude upper bound of  n 2x/'~- for the number of choices for 

(a~,a2,.. .) .  Taking into account the b and c terms then yields dn-_< 

(n + 1)2. n 2V~-and we conclude easily that S does not have exponential growth. 

COROLLARY 2.4. Let R be an algebra over af ie ld  K o f  characteristic 0 and 

let N be the pr ime  radical o f  R .  I f  R ( L ) is a Lie  extension then N ( L ) is a nil 

ideal o f  R ( L ). 

PROOF. We use the characteristic 0 assumption twice. First it implies, by 

Lemma 1. l(iii), that N is an L-invariant ideal of  R and hence that N ( L  ) is an 

ideal of  S = R (L).  Now choose M ~ R  maximal subject to M _  N, M is 

L-stable and M ( L  ) is nil. The goal is to show that M = N. Since the extension 

of  a nil ideal by a nil ideal is nil, we may mod out by M ( L  ) and assume that 

M = 0 .  

I f N  ~ 0, then N contains nonzero nilpotent ideals of  R and we let No be the 

sum of these ideals. Since char K = 0, it follows from Lemma 1. l(ii) that 

N o 4= 0 is also L-stable. Theorem 2.2 now implies that N o ( L )  is a nil ideal of  

R (L)  contradicting the maximality of  M = 0. Thus N = 0 = M as required. 
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It is natural to try to salvage some of this in characteristic p > 0. Of course 

the prime radical of  R need not be L-invariant, but it does contain a largest L- 

invariant ideal, say N. The question then is whether N(L  ) is nil. We have 

COROLLARY 2.5. Let R (L ) be given and let N be the largest L-invariant nil 

ideal of  R. I f  R is either right Noetherian or a p.i. algebra, then N ( L ) is nil. 

PROOF. If R is Noetherian, then N is nilpotent so the result is obvious. We 

assume that R satisfies a polynomial identity of degree d. As in the proof of 

Corollary 2.4, we may assume that the largest L-invariant ideal M of R with 

M _ N and M ( L  ) nil is M = 0. The goal is to show that N = 0. 
By [1], No = N td/2J is generated by nilpotent ideals of  R and it is surely 

L-stable since it is a power of N. Thus by Theorem 2.2, No(L ) is nil and hence 

the maximality assumption implies that No--0. But then N is nilpotent so 

N ( L )  is nil and we conclude that N = 0. 

For our last application we return to crossed products. Since the L-prime 

radical of  R is "generated" by L-invariant nilpotent ideals, it trivially extends 

to a nil ideal o fR  • U(L). In fact it is an immediate consequence of[5] that it 

extends to the prime radical of R • U(L). 

PROPOSITION 2.6. Let R • U(L ) be given. I f  N is the L-prime radical of  R, 
then N • U(L ) is the prime radical of  R • U(L ). 

PROOF. Let P be a prime ideal of  S = R • U(L). Then I = P n R is an 
L-prime ideal of R and P D_ I • U(L). But the latter ideal is also prime by [5, 

Theorem 2.6]. Thus the intersection of all primes of S is equal to 

n I • U(L) = ( n l )  • U(L) 

where I runs through the L-prime ideals of  R. Since N = h i ,  the result 

follows. 

§3. The upper bound 

In this final section we obtain upper bounds for J ( R .  U(L)) and we 

determine this Jacobson radical when R is right Noetherian or a p.i. algebra. 

We start by choosing a well-ordered K-basis (xt, x2, x3 . . . .  } for L. By the 

Poincar~-Birkhoff-Witt theorem, U(L) has a K-basis consisting ofmonomials 

of  the form 
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].1 ~ -  ) ( i ( ~ i 2  " " " ) ~ i .  

with il _-< iz _-< • • • _<- i,. These then also form an R-basis for R • U(L). We 

order this basis of  monomials first by degree and then lexicographically within 

monomials of  the same degree. The following is [5, Lemma 2.4]. 

LEMMA 3.1. Let A <LR • U(L ). For each monomial r define A, to be the set 

o f  r ~ R  such that there exists 

= E r.u 

with deg a -<_ deg r and r = r,. Then A~ is an ideal of  R.  Furthermore for each 

integer n > 0 

A , = ~ A ,  
d e g  r = n 

is an L-invariant ideal of  R. 

The next result is the key ingredient in our argument. Since P is not assumed 

to be L-stable, P(R • U(L)) is only a right ideal o f R  • U(L). Nevertheless with 

care we are able to consider products modulo this right ideal. 

LEMMA 3.2. Let R • U(L) be given with L 4= O. Assume that P is a prime 

ideal o f  R such that 

(i) every nonzero ideal of  R /P  contains a regular element of  R/P,  

(ii) P contains no nonzero L-stable ideal of  R.  
Then J(R • U(L )) = O. 

PROOF. Suppose by way of  contradiction that A = J(R • U(L)) ~ 0. Then 

A contains a nonzero element of  degree n for some n. Furthermore since 

L :~ 0, by suitably multiplying this element by a monomial, we may assume 

that n > 0. In the notation of the preceding lemma, A, is a nonzero L-invariant 

ideal of  R. Hence by asumption (ii), A, ~ P and thus for some z of  degree n, 
A~ ~ P. In other words there exists 

p = X 

with deg p -- n and r, ~ P for some monomial z of degree n. 

For this particular p, we may suppose that r is maximal in the lexicographi- 

cal order with r~ ~ P. In other words, if/t > r then r u ~ P. By (i), Rr~R contains 
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a regular element  modulo  P. Say this element is a ---- Xi uirrvi with ui, vi ~ R .  We 

now replace p by 

Og = 2 UijOVi ~ A .  
i 

Since ru E P fo r / t  > z, it follows that if  

then a~ = a is regular modulo  P and that a~ E P for /t > r.  Fur thermore  

deg a = n = deg r.  

Since a E J (R  • U(L)) ,  1 + a is invertible and we let fl = Z~ b~2 be its inverse. 

Thus  

We show that all ba E P. Suppose by way of  contradict ion that this is not the 

case and choose the monomia l  a maximal  in the support  o f f l  with b~ ~ P. Say 

deg ~r = m and let q be the monomia l  ~rr permuted  into its natural  order.  In 

o ther  words, 

aT = q + lower degree terms. 

We compute  the coefficient, with elements o f  R writ ten on the left, o f  the 

monomia l  q in fl(1 + a) -- 1. Since n > 0 

deg q = d e g c r z  = m + n > 0  

so this coefficient is surely zero. 

We now consider the contr ibut ions of  the individual  factors to this q-term. 

Suppose first that 2 > a. Then b~ E P a n d  hence all coefficients in b~2(1 + a) are 

contained in P. Thus we may assume that 2 < a. Since deg a = deg r = n > 0, 

the only other  terms that have an q-contr ibut ion are o f  the form ba2au# with 

deg 2 = rn and deg # = n. In this case, since 

2a~ = a t 2 + lower degree terms 

we see that the degree m + n contr ibut ion is b~au2l~ and o f  course 2p is a 

monomia l  o f  degree m + n plus lower degree terms. In particular,  i f /z  > 3, 

then a u E P and again we get an q-term in P.  The remaining factors to consider 

have ;t _-< a ,  # _-< z and 
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2# = ar + lower degree terms. 

Thus we must have 2 = a, # = z and this yields an q-term precisely equal to 

b~ a, = boa. Combining all of these terms, using the fact that their sum is zero, 

we see that boa ~ P .  But a is regular modulo P and ba ~ P  so we have a 

contradiction. 

We have therefore shown that ,8 is contained in the right ideal P(R • U(L)). 
Hence 1 -- ,8(1 + a) is also in this right ideal, a contradiction since 1 ~ P .  Thus 

J(R • U(L )) = A = O. 

We remark that the hypothesis of  Lemma 3.2 implies that R is an L-prime 

ring with no nonzero L-invariant nil ideal. Indeed if A, B are L-stable ideals 

with AB = 0, then AB C_ P so say A ___ P. Hypothesis (ii) then implies that 

A = 0. On the other hand ifA is an L-stable nil ideal, then A can contain no 

regular element modulo P. Thus A C_ P by (i) and again A = 0. We can now 

obtain an upper bound for J(R • U(L)). 

THEOREM 3.3. Let R • U(L ) be given with L ~ O. Assume that R has a 
family of prime ideals Pj such that every nonzero ideal of R / Pj contains a regular 
element of  the latter ring. Then 

J(R • U(L )) c. N • U(L ) 

where N is the largest L-stable ideal contained in Oj Pj. 

PROOF. For each j let lj be the largest L-stable ideal of  R contained in Pj. 
Then Ojlj is an L-stable ideal contained in f')jPj. Thus by definition, 
OjIjC_N. 

Observe that t~j = R/Ij has a prime ideal ~ = Pj//j which satisfies (i) and (ii) 

of  the preceding lemma. Indeed t~j/Pj ~ R/Pj implies (i) and the definition of Ij 
yields (ii). We conclude from Lemma 3.2 that 

R • U(L)/Ij • U(L) '"  l~j, U(L) 

is semiprimitive. 

Finally since J ( R ,  U(L)) maps into the radical of  every homomorphic 

image o fR  • U(L), the above implies that 
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J(R • U(L )) CC. ["1 Ij , U(L ) 
J 

as required. 

This of course has a number of consequences. However the content of the 
next result is really Corollary 2.4. In characteristic 0, minimal primes are 
always L- stable by Lemma 1.1 (iv) and therefore the difficulties encountered in 
the proof of Lemma 3.2 disappear. 

COROLLARY 3.4. Let R • U(L) be given with L v~ 0 and K a field of  

characteristic O. Assume that for each minimal prime P o f  R,  every nonzero 

ideal o f  RIP contains a regular element o f  the latter ring. Then J(R • U(L )) = 
N .  U(L ) where N is the prime radical o f  R.  Furthermore J(R • U(L )) is nil. 

PROOF. By Corollary 2.4, N • U(L) is a nil ideal and hence contained in 

J(R • U(L)). In the other direction we use Theorem 3.3 and the fact that N is 

the intersection of the minimal primes of R. 

More interesting is 

COROLLARY 3.5. Let R • U(L ) be a crossed product with L v ~ 0 and assume 
that R is either right Noetherian, a p.i .  algebra or a ring with no nilpotent 
elements. Then J(R • U(L )) = N • U(L ) where N is the largest L-invariant nil 

ideal o f  R.  Furthermore J(R • U(L )) is nil. 

PROOF. By Corollary 2.5 for rings of the first two types, and trivially for the 
third, we have N • U(L ) nil and hence N • U(L ) c_ J(R • U(L )). 

In the other direction we use Theorem 3.3. IfR is either right Noetherian or 
a p.i. algebra and i fP  is any prime ideal of R, then every nonzero ideal of  R / P  
contains a regular element of the latter ring. Furthermore the intersection of all 
such primes is the prime radical and hence a nil ideal. We conclude from 
Theorem 3.3 that J ( R .  U(L))c_ N .  U(L). Finally if R has no nilpotent 
elements then (see [9, Theorem 1.1.1]) R is a subdirect product of domains 

and, by Theorem 3.3 again, J(R • U(L )) = 0 = N • U(L ). 

Finally we obtain information about J(R • U(L)) with no assumption on the 
primes of R. Instead we suppose that R has no nonzero nil ideals. Recall that 
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the monomials  in R • U(L) are well ordered. I f a  = ~ ault ~ R  • U(L)  and i f a  

is the largest monomial  in its support, we say that a is the monomial  degree o f  

a and that a~ is its leading coefficient. 

LEMMA 3.6. Let  a ~ R  * U(L ) be invertible with d e g a  > 1. I f  the leading 

coefficient ao commutes with a, then a~ is nilpotent. 

PROOF. Write a = ao. Since a is invertible there exists fl with aft = 1 = a °. 

Now choose 7 o f  minimal  support size such that a 7 = a" for some n. If7 ~ 0 let 

c~z be its leading term. Since deg a = deg a >_- 1 and a" ~ R ,  we have aG = 

aoc~ = 0. Hence since aa = aa, 

a "+~ = a(o~7) = o~(aT). 

But a7 has smaller support than 7, a contradiction. We conclude that ~, = 0 and 

therefore that a" = 0. 

PROPOSITION 3.7. Let R • U(L ) be given and assume that R has no nonzero 

nil ideals, l f  J (R  • U(L )) ~ O, then R • J (R  • U(L )) ~ O. 

PROOF. Assume that the smallest monomial  degree o f  any nonzero element 

of  J ( R ,  U(L)) is tT. I f  A is the set of  g-coefficients of  all elements a ~  

J (R  • U(L))  with mon-deg a < a,  then A is clearly a nonzero two-sided ideal o f  

R.  Ifcr = 1, then R N J (R  • U(L )) = A ~ 0 as required. 

Suppose by way of  contradiction that o" ~ 1 so deg a > 1. Let 0 4~ a CA and 

let a ~ J ( R , U ( L ) )  with leading coefficient a = a ~ .  Then a a - a a ~  

J ( R ,  U(L)) has monomial  degree smaller than ~r so a a - a a  = 0 .  Since 

deg a _>- 1, 1 + ,~ also has leading coefficient a --- a~ and 1 + a is invertible. It 

follows from Lemma 3.6 that a is nilpotent. Thus A is a nonzero nil ideal of  R,  

a contradiction. 

The following is well known so we only sketch its proof. 

LEMMA 3.8. Let L ' be a Lie subalgebra o f  L .  Then 

J (R  • U(L )) N R • U(L')  c_ J (R  • U(L')). 

PROOF. By extending a well ordered K-basis o f  L '  to one o f  L we deduce 

from the Poincar~-Birkhoff-Wit t  theorem that 

R • U(L)  = R • U(L')  @ C 

where C is a complementary left R • U(L')-module.  This then implies that i f  
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a E R  • U(L') is invertible in R • U(L), then it is invertible in R • U(L'). With 

this we see that J(R • U(L)) N R • U(L') is a quasi-regular ideal o f R  • U(L') 

and hence contained in its Jacobson radical. 

We can now prove 

THEOREM 3.9. Let R • U(L ) be given and assume that R has no nonzero nil 

ideal. I f  either 

(i) JR contains no nonzero L-stable ideal, or 

(ii) some 0 # x E L  acts as an inner derivation on R,  

then J(R • U(L )) = O. 

PROOF. Assume by way of contradiction that J(R • U(L)) 4: 0. Then by 

Proposition 3.7, A = R 0 J(R • U(L )) # 0 and certainly A is an L-stable ideal 

of  R. By Lemma 3.8 with L '  = 0 we have A C_ JR.  Hence if (i) is satisfied we 

have an appropriate contradiction. 

Assume (ii) holds and let 0 # x E L  act like the inner derivation induced by 

b E R  and set L '  = Kx. Then by Lemma 3.8, 

A c_ J(R • U(L)) M R • U(L') c_ J(R • U(L')). 

Let a EA .  Then a ( x -  b ) ~ J ( R ,  U(L')) so l + a ( X -  b) is invertible in 

R • U(L'). But ~¢ - b acts trivially on R so a commutes with 1 + a(X - b). It 

follows from Lemma 3.6 that a is nilpotent and hence that A is nil, a 

contradiction. 

COROLLARY 3.10. Let R • U(L ) be given with char K = 0. Then 

J(R • U(L )) c_ M • U(L ) 

where M is the largest L-invariant ideal in JR.  Furthermore i f  some 0 # x E L  

acts as an inner derivation on R,  then 

J(R • U(L )) CC_ N • U(L ) 

where N is the nil radical o f  R.  

PROOF. For the first part it suffices to show that 

R • U(L) /M • U(L) = (R /M)  • U(L) 

is semiprimitive. Hence since M c_ JR we can assume, replacing R by R / M ,  

that JR contains no nonzero L-stable ideal. But the nil radical is L-stable, by 
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Lemma 1.1 (i), so we conclude that R has no nonzero nil ideals and Theorem 

3.9(i) yields the result. 

For the second part we note that N is L- stable, by Lemma 1.1, and therefore 

it suffices to show that 

R • U ( L ) / N .  U(L)  = ( R / N )  • U(L)  

is semiprimitive. But R / N h a s  no nonzero nil ideals and some 0 :~ x E L  acts as 

an inner derivation on R / N  so, this time, Theorem 3.9(ii) yields the result. 

It is quite possible that the second part of  the above holds with only the 

assumption that char K = 0 and L ~ 0. In view of the proof of Theorem 

3.9(ii), this problem reduces to showing that J (R  [x; ~]) n R is nil for any Ore 

extension R[x;  J]. The equations involved in a potential proof of this fact 

seem to be quite complicated. We close with one such which is interesting but 

certainly not readily useful. 

LEMMA 3.1 1. Let a E J ( R [ x ;  ~]) n R and define ai inductively by a~ = a 

and a,+l = (1 + ~(ai))- lai .  Then ala2. • .a ,  = O for some n > 1. 

PROOF. Note first that A = J ( R [ x ;  d~])N R is a d~-stable ideal of  R con- 

tained in JR ,  by Lemma 3.8. With this we see that the sequence al, a2, a3, • • • in 

A is well defined. Indeed, by induction, since a, EA we have O(a~)~A C_ JR  so 

(1 + O(a,)) -~ ER  exists and ai+j = (1 + t~(ai))-lai C A .  For convenience set 

c, = a ja 2 . . . a , _~  with cl = 1. Since a E J ( R [ x ;  ~]), 1 + ax is invertible and 

there exists fl with fl(1 + ax)  = 1 or, in other words, fl(1 + a~x) = c~. 

We can now choose p of minimal degree with p(1 + a,,x) = c, for some 
n > 1. Iffl :~ 0, let b be its leading coefficient so that clearly ba, = 0. Now 

c,+~ -= c,a, =f l ( l  + a,,x)a, =fla,(1 + xa , )  

= fla,(l + d(a,) + a ~ )  

=f la , ( l  + ~(a,)).(1 + a , + , x ) .  

But ba, = 0  implies that degfla,(1 + 0 ( a , ) ) < d e g f l ,  a contradiction. Thus 

f l  = 0 a n d  c .  = 0. 

Notice that each ai and hence each aja2. • .a ,  is a product of  a 's with units 

interspersed. Thus if R is commutative we obtain the known result that 

J (R[x ;  ~]) f) R is nil. 
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