RADICALS OF CROSSED PRODUCTS OF ENVELOPING ALGEBRAS

BY

JEFFREY BERGEN,^a S. MONTGOMERY^{t,b} AND D. S. PASSMAN^{11,c} *aMathematics Department, De Paul University, Chicago, IL 60604, USA; bMathematics Department, University of Southern California, Los Angeles, CA 90089, USA; and CMathematics Department, University of Wisconsin -- Madison, Madison, WI 53706, USA*

ABSTRACT

Let L be a Lie algebra over a field K which acts as K-derivations on a K-algebra R. Then this action determines a crossed product $R * U(L)$ where $U(L)$ is the enveloping algebra of L . The goal of this paper is to describe the Jacobson radical of $R * U(L)$ for $L \neq 0$. We are most successful when R is a p.i. algebra or Noetherian. In more general situations we at least obtain upper and lower bounds for $J(R * U(L))$ which are ideals extended from R. Furthermore, we offer an interesting example in all characteristics of a commutative K -algebra C which admits a derivation δ such that C is δ -prime but not semiprime.

Let L be a Lie algebra over the commutative ring K, such that L is a free Kmodule, and let $U(L)$ denote its universal enveloping algebra. If R is a Kalgebra and L acts on R as K -derivations, then this action determines in a natural manner a ring generated by R and $U(L)$. This K-algebra is denoted by $R * U(L)$ and is called the crossed product of R by $U(L)$. The aim of this paper is to describe the Jacobson radical $J(R * U(L))$ when $L \neq 0$. Our main result, Corollary 3.5, asserts that if R is a p.i. algebra, then $J(R * U(L)) = N * U(L)$ where N is the largest L-invariant nil ideal of R; moreover $J(R * U(L))$ is nil in this case. By a somewhat easier argument, we obtain the same conclusion for $$ any Noetherian algebra.

For an arbitrary algebra R, we find upper and lower bounds for $J(R * U(L))$

tt Partially supported by N.S.F. Grant No. MCS 82-19678.

Received September 1, 1986 and in revised form April 22, 1987

t Partially supported by N.S.F. Grant No. DMS 85-00959 and by a Guggenheim Memorial Foundation Fellowship.

which are ideals extended from R . For example, if K has characteristic 0, we prove that

$$
N * U(L) \subseteq J(R * U(L)) \subseteq M * U(L)
$$

where N is the prime radical of R and M is the largest L -stable ideal contained in *J(R)* (Corollaries 2.4 and 3.10). Furthermore M can be replaced by the nil radical of R if some $0 \neq x \in L$ acts as an inner derivation on R.

Previous results on this problem were of two kinds. The first, when L acts trivially, include Amitsur's well-known theorem [2] on polynomial rings $R[x]$ and Irving's theorem [10] on enveloping algebras *U(L)* for L a Lie algebra which is also a finite K-module (here $R = K$). We remark that the latter theorem now has a very short proof [3]. For the second kind, when the action of L is non-trivial, much less is known. In fact only the rank one case, where $L = Kx$ and $R * U(L) = R[x; \delta]$ is an Ore extension, has been studied. In this case, the radical was determined for R a commutative ring in [7] and for R Noetherian in [11]. By iteration, the result of [11] extends to solvable Lie algebras L.

Thus our results generalize those of [7, 10, 11] to actions of arbitrary Lie algebras.

In addition, we study a rather interesting example, namely the countabledimensional exterior algebra E over an arbitrary field K . We show (Proposition 1.3) that E can be given a derivation δ such that E is δ -prime. Since E is not semiprime, this therefore answers a question of [8]. By taking the center of E, one even obtains a commutative example. It follows that $S = E[y; \delta]$ is prime and, since E is a p.i. algebra, $J(S) = N[y; \delta]$ is a nil ideal. Thus $J(S)$ gives a natural example of a prime nil ring which is generated by two elements. Moreover, E is a Jacobson ring, whereas S is not (Proposition 2.3). The latter example in characteristic 0 is new; an example in characteristic $p \neq 0$ is given in [6]. Finally E and S have interesting growth properties. Although E is locally finite, S does not have polynomial growth even though it is generated by two elements.

We now describe what we mean by a crossed product, following [12, Chapter 1, Section 7]. First note that since L is free over K, the Poincaré–Birkhoff–Witt theorem holds, and thus the standard monomials in a K-basis $\{x_i\}$ for L form a basis for *U(L).* A K-algebra S containing R is called a *crossed product* of R by $U(L)$, and writen $R * U(L)$, provided there is a K-module embedding of L into $S, x \rightarrow \hat{x}$, such that for all $x, y \in L, r \in R$,

- (i) $\dot{x}r r\dot{x} = \delta_x(r) \in R$, where $\delta_x \in \text{Der}_K(R)$.
- (ii) $\bar{x} \bar{y} \bar{y} \bar{x} = \overline{[x, y]} + t(x, y)$, where $t : L \times L \rightarrow R$.
- (iii) S is a free right (and left) R -module with the standard monomials in $\{\bar{x}_i\}$ as basis.

Although crossed products are defined in a somewhat different manner in [5], the two notions are equivalent. Note that if the cocyle $t \equiv 0$, then $R * U(L)$ becomes the more familiar skew enveloping algebra, or differential polynomial ring, written $R + U(L)$.

In fact, the results of Section 2 are valid for more general algebras than crossed products; we thank A. Joseph for pointing this out to us. A K -algebra S is called a *Lie extension* of R by L, and written $R(L)$, provided S is generated by a subalgebra R and a subspace L such that for all $x, y \in L$, $r \in R$,

- (i) $xr rx = \delta_x(r) \in R$, where $\delta_x \in \text{Der}_K(R)$,
- (ii) $xy yx \in L + R$.

Note that L is not assumed to be a Lie algebra here. In particular a homomorphic image of a crossed product $R * U(L)$ is a Lie extension.

§1. L-prime rings

In this section we briefly discuss L actions on rings. We are especially concerned with the ideals which are L -stable. To be precise, let L be a vector space over K, let R be a K-algebra and let $\delta: L \to \text{Der}_K R$ be any map from L into the algebra of K-derivations of R. Thus each $x \in L$ determines a derivation δ_x of R. Note that we do not assume here that L is a Lie algebra or that δ is a Lie homomorphism. An ideal I of R is said to be L-stable or L -invariant if $\delta_x(I) \subseteq I$ for all $x \in L$. Obviously this can be checked one derivation at a time. The following result is known; however our proofs of (i) and (ii) seem easier than others in the literature.

LEMMA 1.1. *Let* char $K = 0$. *Then L stabilizes*

- (i) *the nil radical of R,*
- (ii) *the sum of all nilpotent ideals of R,*
- (iii) *the prime radical of R,*
- (iv) *each minimal prime of R.*

PROOF. Let $\delta \in \text{Der}_K(R)$ and let $A \triangleleft R$. Then $A + \delta(A) \triangleleft R$ since $r\delta(a) \equiv$ δ (*ra*) mod *A* and δ (*a*)*r* = δ (*ar*) mod *A* for all *r* \in *R*, *a* \in *A*.

(i) For this we need only show that if $A \triangleleft R$ is nil, then so is $A + \delta(A)$. In fact

we need only check that $\delta(A)$ is nil modulo A. Let $a \in A$ and say $a^n = 0$. Then we have easily

$$
0 = \delta^n(a^n) \equiv n! \, (\delta a)^n \bmod A.
$$

Since char $K = 0$ we conclude that $(\delta a)^n \in A$ as required.

(ii) Here we must show that if $A \triangleleft R$ is nilpotent, then $\delta(A)$ is nilpotent modulo A and the same argument works. Indeed if $A^n = 0$, then

$$
0 = \delta^{n}(A^{n}) \equiv n! (\delta A)^{n} \bmod A,
$$

so $(\delta A)^n \subseteq A$.

(iv) This is proved in [8, Proposition 1. I] and (iii) is immediate from either (ii) or (iv) .

The standard counterexample in characteristic $p > 0$ is as follows. Let char $K = p$ and set $R = K[x]/(x^p)$. Then $\delta = \partial/\partial x$ is a derivation of R and all four of the ideals discussed in Lemma 1.1 are equal to xR which is not δ -stable. In fact, R is a δ -simple ring, that is it has no nontrivial δ -stable ideals.

In view of the subject of this paper, it is natural to ask whether *JR* is necessarily L-stable. The answer is "no" in any characteristic. Indeed let $R = K[x]_x$ be the set of all rational functions $f(x)/g(x)$ with $g(0) \neq 0$. Then $\delta = \partial/\partial x$ is a derivation of R but $JR = xR$ is not δ -stable.

Again let L act on R . We say that R is L -prime if for all L -stable ideals $0 \neq A$, B we have $AB \neq 0$. It is clear that if R is prime then it is L-prime. For the converse we know at least

LEMMA 1.2. *Let L act on R.*

- (i) *If R is semiprime then every annihilator ideal is L-stable.*
- (ii) *lf R is semiprime and L-prime, then it is prime.*
- (iii) *Assume R has a unique largest nilpotent ideal and that* char $K = 0$. If R *is L-prime then it is prime.*

PROOF. (i) Say $A \triangleleft R$ and $B = r_R(A)$. Since $\delta(A^2) \subseteq A$ and $AB = 0$ we have

$$
0 = \delta(A^2B) = A^2\delta(B) \supseteq (A\delta(B))^2
$$

so $\delta(B) \subseteq r_R(A) = B$.

(ii) Let A, $B \triangleleft R$ with $AB = 0$. We may assume first that $B = r_R(A)$ and then that $A = I_R(B)$. But then A and B are both L-stable so, since R is L-prime, one of A or B must be zero.

(iii) If N is the unique largest nilpotent ideal of R then, by Lemma 1.1(ii), N is L-stable. But R is L-prime and $N^n = 0$ so $N = 0$. Therefore R is semiprime and hence prime by (ii).

Part (iii) of course always applies when R is right Noetherian. We note however that (iii) is false in characteristic $p > 0$. The ring $R = K[x]/(x^p)$ with $\delta = \partial/\partial x$ is an appropriate counterexample. This also shows that the semiprime hypothesis is required in (ii). An example for this valid in all characteristics, including characteristic zero, is as follows. This answers a question in [8].

PROPOSITION 1.3. *Let K be afield and let E be the Grassmann (exterior) algebra over K generated by the countably many elements* x_1, x_2, x_3, \ldots *Then there exists a K-derivation* δ *of E with* $\delta(x_i) = x_{i+1}$ *for all i. Furthermore for this* δ , E and its center $\mathbf{Z}(E)$ are both δ -prime rings which are not semiprime.

PROOF. We first observe that δ defines a derivation on E. To this end let $F = K \langle X_1, X_2, X_3, \ldots \rangle$ be a free K-algebra and map F onto E via $X_i \rightarrow X_i$. Then by definition of E, the kernel of this map is the ideal generated by X_i^2 and $X_iX_i + X_iX_i$ for all *i, j.* Now $\delta(X_i) = X_{i+1}$ certainly extends to a derivation on F and thus δ will yield a derivation of E provided that the ideal of relations is δ stable. But

$$
\delta(X_i^2) = X_i X_{i+1} + X_{i+1} X_i
$$

and

$$
\delta(X_iX_j + X_jX_i) = (X_{i+1}X_j + X_jX_{i+1}) + (X_iX_{j+1} + X_{j+1}X_i)
$$

so this fact is clear.

We can now proceed as in [8, Example 1.6]. For convenience, if $i_1 < i_2 <$ $\cdots < i_n$ we write $x_i x_i \cdots x_i = x_S$ where S is the set $\{i_1, i_2, \ldots, i_n\}$. Then the collection of these monomials x_s yields a K-basis for E. We call a monomial of the form $x_i x_{i+1} x_{i+2} \cdots x_{i+m}$ a consecutive segment starting at i. We note that any nonzero ideal I of E contains a consecutive segment starting at $i = 1$. Indeed let $0 \neq \alpha = \sum k_S x_S \in I$ and let $U = \{1, 2, ..., m\}$ be chosen with $U \supseteq S$ for all x_s in the support of α . Furthermore let T be of minimal size with $k_T \neq 0$. Notice that if x_s is in the support of α and $x_s \cdot x_{t \vee T} \neq 0$, then S must be disjoint from $U\setminus T$ so $S\subseteq T$ and hence $S = T$. Thus $k_Tx_U = \pm \alpha \cdot x_{U\setminus T} \in I$.

Next we observe that if $s \geq 2n$ then

(*)
$$
\delta^{n}(x_{i}x_{i+1}\cdots x_{i+n-1})\cdot x_{i+n+1}x_{i+n+2}\cdots x_{i+s-1}=x_{i+1}x_{i+2}\cdots x_{i+s-1}
$$

For this we may assume for convenience that $i = 1$ and proceed by induction on n . We wish to consider

$$
\beta = \delta^{n}(x_1x_2\cdots x_n)\cdot x_{n+2}x_{n+3}\cdots x_{s}.
$$

Since $\delta(x_1 x_2 \cdots x_n) = x_1 x_2 \cdots x_{n-1} x_{n+1}$ we have

$$
\beta=\delta^{n-1}(x_1x_2\cdots x_{n-1}\cdot x_{n+1})\cdot x_{n+2}x_{n+3}\cdots x_s.
$$

But $s \ge 2n$ implies that any further derivative of x_{n+1} will annihilate $x_{n+2}x_{n+3}\cdots x_s$. Thus in computing β we may essentially view x_{n+1} as a constant. This yields

$$
\beta=\delta^{n-1}(x_1x_2\cdots x_{n-1})\cdot x_{n+1}x_{n+2}\cdots x_s
$$

and the fact follows by induction on n .

As a consequence of the two previous paragraphs we see that any nonzero δ stable ideal I of E contains a consecutive segment starting at i for all $i \ge 1$. In fact the $i = 1$ case has already been proved and formula (\ast) shows that i implies $i+1$.

It is now a simple matter to prove the result. If A and B are nonzero δ -stable ideals of E, then A contains $x_1x_2 \cdots x_{n-1}$ for some $n \ge 2$ and B contains $x_n x_{n-1} \cdots x_t$ for some $t \geq n$. Thus $AB \neq 0$ and E is δ -prime. Hence so is $\mathbb{Z}(E)$ since δ acts on $\mathbf{Z}(E)$ and since any δ -stable ideal of $\mathbf{Z}(E)$ extends to one of E. Finally x_1x_2 is a central element of square zero so neither E nor $\mathbb{Z}(E)$ is semiprime.

In the preceding example, every annihilator ideal is nilpotent. In fact, we do not know of an L-prime ring which does not have this property.

§2. The **lower bound**

We now formally begin our work on $J(R * U(L))$. In this section we obtain a lower bound for this ideal, in the more general setting of Lie extensions $R(L)$. Indeed we show that if N is an L -stable ideal of R which is generated by nilpotent ideals, then the extended ideal $N\langle L \rangle$ is nil and hence contained in the Jacobson radical.

We fix some notation. Let $S = R \langle L \rangle$ be a Lie extension of R by L over K. If X is a K-subspace of L, then for convenience we write

$$
X^{(n)} = K + X + X^2 + \cdots + X^n = (K + X)^n.
$$

Furthermore if (a_1, a_2, \ldots, a_t) is a *t*-tuple of nonnegative integers, then we denote the tuple by its corresponding letter a and we write $|a| = a_1 + a_2 +$ \cdots + a_t . Recall that if $x \in L$ then $xr = rx + \delta_x(r)$ for all $r \in R$.

LEMMA 2. I. *Let X be a K-subspace of L and let V be a K-subspace of R. Define V_n* inductively by $V_0 = V$ and

$$
V_{n+1} = V_n + \sum_{x \in X} \delta_x(V_n).
$$

Then for all m, t \geq 1

$$
(V X^{(m)})^t \subseteq \sum_{|a|=mt} S V_{a_1} V_{a_2} \cdots V_{a_t}.
$$

PROOF. First observe that for any $x \in X$

$$
\delta_x(V_{a_1}V_{a_2}\cdots V_{a_s})\subseteq \sum_{|b|=1}V_{a_1+b_1}V_{a_2+b_2}\cdots V_{a_s+b_s}.
$$

Hence since $xr = rx + \delta_x(r)$ for all $r \in R$ we have

$$
V_{a_1}V_{a_2}\cdots V_{a_r}X \subseteq \sum_{|b|=1} SV_{a_1+b_1}V_{a_2+b_2}\cdots V_{a_r+b_r}.
$$

It now follows by induction on $m \geq 1$ that

$$
(**) \t V_{a_1}V_{a_2}\cdots V_{a_s}X^{(m)} \subseteq \sum_{|b| = m} SV_{a_1+b_1}V_{a_2+b_2}\cdots V_{a_s+b_s}.
$$

Finally we prove the lemma by induction on t. The case $t = 1$ follows from (**) with $s = 1$ and $a_1 = 0$. If the inclusion holds for $t - 1$ then

$$
(V X^{(m)})^t \subseteq \sum_{|a|=m(t-1)} SV_{a_1}V_{a_2}\cdots V_{a_{t-1}}(V_0 X^{(m)}).
$$

Another application of $(**)$ with $s = t$ yields the result.

The next theorem extends one direction of [7, Theorem 3.3] from the case of $L = Kx$ to arbitrary L. Given our Lemma 2.1, essentially the same proof in [7] can be used.

THEOREM 2.2. *Let N be an L-stable ideal of R generated by nilpotent ideals. Then* $N \langle L \rangle$ *is a nil ideal of R* $\langle L \rangle$ *.*

PROOF. Since N is L-stable we know that $N\langle L\rangle \langle S = R\langle L\rangle$. Let $\alpha \in N\langle L\rangle$. Then there exists a finite dimensional subspace V of N and a finite dimensional subspace X of L with $\alpha \in V\chi^{(m)}$ for some $m \geq 1$. It suffices to prove that $V\chi^{(m)}$ is nilpotent and we use the notation of the preceding lemma. It is clear that V_{2m-1} is finite dimensional and that $V_{2m-1} \subseteq N$ since N is L-stable. Thus since N is generated by nilpotent ideals there exists $I \triangleleft R$ with $V_{2m-1} \subseteq I$ and $I^s = 0$.

Set $t = 2s$. We claim that $V_{a_1}V_{a_2}\cdots V_{a_k} = 0$ if $|a| = mt$. Indeed, since $mt = |a| = a_1 + a_2 + \cdots + a_t$, there are at most $s = t/2$ of the a_i 's which are $\geq 2m$. Thus the remaining V_{a_i} are contained in I and hence

$$
V_{a_1}V_{a_2}\cdots V_{a_r}\subseteq I^s=0.
$$

Lemma 2.1 now implies that $(VX^{(m)})^t = 0$.

This result has numerous consequences. We start with an example in differential polynomial rings analogous to the skew polynomial example in [13]. A characteristic $p > 0$ example is contained in [6].

PROPOSITION 2.3. *Let E be the Grassmann algebra over K generated by the countably many elements* x_1, x_2, x_3, \ldots and let δ be the derivation of E defined *by* $\delta(x_i) = x_{i+1}$. Then *E* is a Jacobson ring but the Ore extension $S = E[y; \delta]$ is *not. Indeed S is prime but* $J(S) = N[y; \delta] \neq 0$ *where N is the prime radical of E.*

PROOF. Since $E/N = K$, N is the unique prime of E and E is clearly Jacobson. We know by Proposition 1.3 that δ defines a derivation on E and that E is δ -prime. Thus, by [5, Theorem 2.6], $S = E[y; \delta]$ is prime. Furthermore since N is δ -stable and generated by nilpotent ideals, Theorem 2.2 implies that $N[y; \delta] \subseteq J(S)$. Finally

$$
S/N[y; \delta] \simeq (E/N)[y; \delta] \simeq K[y]
$$

is semiprimitive so we conclude that $N[y; \delta] = J(S)$.

Note that $J(S)$ is a prime nilring generated by x_1 and y.

We remark that the K-algebra $S = E[y; \delta]$ above has rather interesting growth properties. Since the argument is essentially a modification of the work of [14], we just sketch it here and refer the reader to that paper for complete details. Note first that S is a finitely generated K -algebra with generating vector space $V = K + Kx_1 + Ky$. It follows easily that $Vⁿ$ has a k-basis consisting of all monomials of the form $x_1^a x_2^a \cdots x_k^a y^b$ with $a_i = 0$ or 1, $b \ge 0$ and $\Sigma_i ia_i +$ $b \leq n$. By adding an additional parameter c, we see that $d_n = \dim_K V^n$ is equal to the number of infinite tuples $(a_1, a_2, \ldots, a_k, \ldots, b, c)$ of integers with $a_i = 0$

or 1, $b \ge 0$, $c \ge 0$ and $\sum_i ia_i + b + c = n$. Thus the generating function for these dimensions is given by

$$
\sum_{n=0}^{\infty} d_n \zeta^n = \prod_{i=1}^{\infty} (1 + \zeta^i) \cdot (1 + \zeta + \zeta^2 + \cdots)^2
$$

= $(1 - \zeta)^{-2} \cdot \prod_{i=1}^{\infty} (1 + \zeta^i).$

To obtain a lower bound for d_n , we note that the sum of the positive integers $\langle \sqrt{n} \rangle$ is at most *n*. Thus $\sum_{i=1}^{\sqrt{n}} i a_i \leq n$ for all choices of $a_i = 0$ or 1 and hence $d_n \geq 2^{\sqrt{n}-1}$. This shows that S does not have polynomial growth so GKdim $S = \infty$ even though GKdim $E = 0$ since E is locally finite dimensional. In the other direction we again fix n and note that $a_i \neq 0$ implies that $i \leq n$. Furthermore we have

$$
n \geq \sum_{i=\sqrt{n}}^n i a_i \geq \sqrt{n} \sum_{i=\sqrt{n}}^n a_i
$$

so at most \sqrt{n} of the a_i in the range $\sqrt{n} \le i \le n$ can be nonzero. It therefore follows that at most $2\sqrt{n}$ of the a_i in the range $1 \leq i \leq n$ can be nonzero and this yields a crude upper bound of $n^{2\sqrt{n}}$ for the number of choices for $(a_1, a_2,...)$. Taking into account the b and c terms then yields $d_n \leq$ $(n + 1)^2 \cdot n^{2\sqrt{n}}$ and we conclude easily that S does not have exponential growth.

COROLLARY 2.4. *Let R be an algebra over afield K of characteristic 0 and let N be the prime radical of R. If R(L) is a Lie extension then N(L) is a nil ideal of R* $\langle L \rangle$.

PROOF. We use the characteristic 0 assumption twice. First it implies, by Lemma 1.1(iii), that N is an L-invariant ideal of R and hence that $N(L)$ is an ideal of $S = R \langle L \rangle$. Now choose $M \triangleleft R$ maximal subject to $M \subseteq N$, M is L-stable and $M\langle L \rangle$ is nil. The goal is to show that $M = N$. Since the extension of a nil ideal by a nil ideal is nil, we may mod out by $M\langle L \rangle$ and assume that $M=0$.

If $N \neq 0$, then N contains nonzero nilpotent ideals of R and we let N_0 be the sum of these ideals. Since char $K = 0$, it follows from Lemma 1.1(ii) that $N_0 \neq 0$ is also L-stable. Theorem 2.2 now implies that $N_0(L)$ is a nil ideal of $R\langle L\rangle$ contradicting the maximality of $M = 0$. Thus $N = 0 = M$ as required.

It is natural to try to salvage some of this in characteristic $p > 0$. Of course the prime radical of R need not be L -invariant, but it does contain a largest L invariant ideal, say N. The question then is whether $N(L)$ is nil. We have

COROLLARY 2.5. *Let R (L) be given and let N be the largest L-invariant nil ideal of R. If R is either right Noetherian or a p.i. algebra, then* $N\langle L \rangle$ *is nil.*

PROOF. If R is Noetherian, then N is nilpotent so the result is obvious. We assume that R satisfies a polynomial identity of degree d . As in the proof of Corollary 2.4, we may assume that the largest L -invariant ideal M of R with $M \subseteq N$ and $M(L)$ nil is $M = 0$. The goal is to show that $N = 0$.

By [1], $N_0 = N^{d/2}$ is generated by nilpotent ideals of R and it is surely L-stable since it is a power of N. Thus by Theorem 2.2, $N_0(L)$ is nil and hence the maximality assumption implies that $N_0=0$. But then N is nilpotent so $N(L)$ is nil and we conclude that $N = 0$.

For our last application we return to crossed products. Since the L-prime radical of R is "generated" by L -invariant nilpotent ideals, it trivially extends to a nil ideal of $R * U(L)$. In fact it is an immediate consequence of [5] that it extends to the prime radical of $R * U(L)$.

PROPOSITION 2.6. *Let* $R * U(L)$ *be given. If N* is the *L*-prime radical of R , *then* $N * U(L)$ *is the prime radical of* $R * U(L)$ *.*

PROOF. Let P be a prime ideal of $S = R * U(L)$. Then $I = P \cap R$ is an L-prime ideal of R and $P \supseteq I * U(L)$. But the latter ideal is also prime by [5, Theorem 2.6]. Thus the intersection of all primes of S is equal to

$$
\bigcap I * U(L) = (\bigcap I) * U(L)
$$

where I runs through the L-prime ideals of R. Since $N = \bigcap I$, the result follows.

§3. The upper bound

In this final section we obtain upper bounds for $J(R * U(L))$ and we determine this Jacobson radical when R is right Noetherian or a p.i. algebra. We start by choosing a well-ordered K-basis $\{x_1, x_2, x_3, \ldots\}$ for L. By the Poincaré-Birkhoff-Witt theorem, $U(L)$ has a K-basis consisting of monomials μ of the form

with $i_1 \leq i_2 \leq \cdots \leq i_n$. These then also form an *R*-basis for $R * U(L)$. We order this basis of monomials first by degree and then lexicographically within monomials of the same degree. The following is [5, Lemma 2.4].

LEMMA 3.1. *Let* $A \triangleleft R * U(L)$. For each monomial τ define A_{τ} to be the set $of r \in R$ such that there exists

$$
\alpha = \sum_{\mu} r_{\mu} \mu \in A
$$

with $\deg \alpha \leq \deg \tau$ *and* $r = r_t$ *. Then* A_t *is an ideal of R. Furthermore for each integer n* ≥ 0

$$
A_n = \sum_{\deg \tau = n} A_\tau
$$

is an L-invariant ideal of R.

The next result is the key ingredient in our argument. Since P is not assumed to be *L*-stable, $P(R * U(L))$ is only a right ideal of $R * U(L)$. Nevertheless with care we are able to consider products modulo this right ideal.

LEMMA 3.2. Let $R * U(L)$ be given with $L \neq 0$. Assume that P is a prime *ideal of R such that*

(i) *every nonzero ideal of R/P contains a regular element of R/P,*

(ii) *P contains no nonzero L-stable ideal of R. Then* $J(R * U(L)) = 0$.

PROOF. Suppose by way of contradiction that $A = J(R * U(L)) \neq 0$. Then A contains a nonzero element of degree n for some n. Furthermore since $L \neq 0$, by suitably multiplying this element by a monomial, we may assume that $n > 0$. In the notation of the preceding lemma, A_n is a nonzero L-invariant ideal of R. Hence by asumption (ii), $A_n \nsubseteq P$ and thus for some τ of degree n, $A_{\tau} \subsetneq P$. In other words there exists

$$
\rho=\sum r_\mu\mu\!\in\!A
$$

with deg $p = n$ and $r_x \notin P$ for some monomial τ of degree n.

For this particular ρ , we may suppose that τ is maximal in the lexicographical order with $r_{\tau} \notin P$. In other words, if $\mu > \tau$ then $r_{\mu} \in P$. By (i), $Rr_{\tau}R$ contains

a regular element modulo P. Say this element is $a = \sum_i u_i r_i v_i$ with $u_i, v_i \in R$. We now replace ρ by

$$
\alpha=\sum_i u_i \rho v_i \in A.
$$

Since $r_u \in P$ for $\mu > \tau$, it follows that if

$$
\alpha = \sum a_{\mu} \mu
$$

then $a_t = a$ is regular modulo P and that $a_u \in P$ for $\mu > \tau$. Furthermore deg $\alpha = n = \text{deg } \tau$.

Since $\alpha \in J(R * U(L))$, $1 + \alpha$ is invertible and we let $\beta = \sum_{\lambda} b_{\lambda} \lambda$ be its inverse. Thus

$$
1 = \beta(1 + \alpha) = \left(\sum_{\lambda} b_{\lambda} \lambda\right) \left(1 + \sum_{\mu} a_{\mu} \mu\right).
$$

We show that all $b_{\lambda} \in P$. Suppose by way of contradiction that this is not the case and choose the monomial σ maximal in the support of β with $b_{\sigma} \notin P$. Say deg $\sigma = m$ and let η be the monomial $\sigma\tau$ permuted into its natural order. In other words,

$$
\sigma\tau = \eta + \text{lower degree terms.}
$$

We compute the coefficient, with elements of R written on the left, of the monomial η in $\beta(1 + \alpha) = 1$. Since $n > 0$

$$
\deg \eta = \deg \sigma \tau = m + n > 0
$$

so this coefficient is surely zero.

We now consider the contributions of the individual factors to this η -term. Suppose first that $\lambda > \sigma$. Then $b_{\lambda} \in P$ and hence all coefficients in $b_{\lambda} \lambda (1 + \alpha)$ are contained in P. Thus we may assume that $\lambda \leq \sigma$. Since deg $\alpha = \deg \tau = n > 0$, the only other terms that have an *n*-contribution are of the form $b_{\lambda} \lambda a_{\mu} \mu$ with $\deg \lambda = m$ and $\deg \mu = n$. In this case, since

$$
\lambda a_{\mu} = a_{\mu} \lambda + \text{lower degree terms}
$$

we see that the degree $m + n$ contribution is $b_{\lambda}a_{\mu}\lambda\mu$ and of course $\lambda\mu$ is a monomial of degree $m + n$ plus lower degree terms. In particular, if $\mu > \tau$, then $a_{\mu} \in P$ and again we get an η -term in P. The remaining factors to consider have $\lambda \leq \sigma, \mu \leq \tau$ and

 $\lambda \mu = \sigma \tau +$ lower degree terms.

Thus we must have $\lambda = \sigma$, $\mu = \tau$ and this yields an η -term precisely equal to $b_{\sigma} a_{\tau} = b_{\sigma} a$. Combining all of these terms, using the fact that their sum is zero, we see that $b_{\sigma}a \in P$. But a is regular modulo P and $b_{\sigma} \notin P$ so we have a contradiction.

We have therefore shown that β is contained in the right ideal $P(R * U(L))$. Hence $1 = \beta(1 + \alpha)$ is also in this right ideal, a contradiction since $1 \notin P$. Thus $J(R * U(L)) = A = 0.$

We remark that the hypothesis of Lemma 3.2 implies that R is an L -prime ring with no nonzero L -invariant nil ideal. Indeed if A , B are L -stable ideals with $AB = 0$, then $AB \subseteq P$ so say $A \subseteq P$. Hypothesis (ii) then implies that $A = 0$. On the other hand if A is an L-stable nil ideal, then A can contain no regular element modulo P. Thus $A \subseteq P$ by (i) and again $A = 0$. We can now obtain an upper bound for $J(R * U(L))$.

THEOREM 3.3. Let $R * U(L)$ be given with $L \neq 0$. Assume that R has a *family of prime ideals P_i such that every nonzero ideal of R/P_i contains a regular element of the latter ring. Then*

$$
J(R * U(L)) \subseteq N * U(L)
$$

where *N* is the largest *L*-stable ideal contained in $\bigcap_i P_i$.

PROOF. For each *j* let I_i be the largest L-stable ideal of R contained in P_i . Then $\bigcap_j I_j$ is an *L*-stable ideal contained in $\bigcap_j P_j$. Thus by definition, $\bigcap_j I_j \subseteq N$.

Observe that $\bar{R}_j = R/I_j$ has a prime ideal $\bar{P}_j = P_j/I_j$ which satisfies (i) and (ii) of the preceding lemma. Indeed $\bar{R_j}/\bar{P_j} \cong R/P_j$ implies (i) and the definition of I_j yields (ii). We conclude from Lemma 3.2 that

$$
R * U(L)/I_i * U(L) \simeq \overline{R}_i * U(L)
$$

is semiprimitive.

Finally since $J(R * U(L))$ maps into the radical of every homomorphic image of $R * U(L)$, the above implies that

$$
J(R * U(L)) \subseteq \bigcap_j I_j * U(L)
$$

=
$$
\left(\bigcap_j I_j\right) * U(L) \subseteq N * U(L)
$$

as required.

This of course has a number of consequences. However the content of the next result is really Corollary 2.4. In characteristic 0, minimal primes are always L- stable by Lemma 1.1 (iv) and therefore the difficulties encountered in the proof of Lemma 3.2 disappear.

COROLLARY 3.4. Let $R * U(L)$ be given with $L \neq 0$ and K a field of *characteristic O. Assume that for each minimal prime P of R, every nonzero ideal of RIP contains a regular element of the latter ring. Then* $J(R * U(L)) =$ $N * U(L)$ where N is the prime radical of R. Furthermore $J(R * U(L))$ is nil.

PROOF. By Corollary 2.4, $N * U(L)$ is a nil ideal and hence contained in $J(R * U(L))$. In the other direction we use Theorem 3.3 and the fact that N is the intersection of the minimal primes of *.*

More interesting is

COROLLARY 3.5. Let $R * U(L)$ be a crossed product with $L \neq 0$ and assume *that R is either right Noetherian, a p.i. algebra or a ring with no nilpotent elements. Then* $J(R * U(L)) = N * U(L)$ where N is the largest L-invariant nil *ideal of R. Furthermore* $J(R * U(L))$ *is nil.*

PROOF. By Corollary 2.5 for rings of the first two types, and trivially for the third, we have $N * U(L)$ nil and hence $N * U(L) \subseteq J(R * U(L))$.

In the other direction we use Theorem 3.3. If R is either right Noetherian or a p.i. algebra and ifP is any prime ideal of R, then every nonzero ideal *of R/P* contains a regular element of the latter ring. Furthermore the intersection of all such primes is the prime radical and hence a nil ideal. We conclude from Theorem 3.3 that $J(R * U(L)) \subseteq N * U(L)$. Finally if R has no nilpotent elements then (see [9, Theorem 1.1.1]) R is a subdirect product of domains and, by Theorem 3.3 again, $J(R * U(L)) = 0 = N * U(L)$.

Finally we obtain information about $J(R * U(L))$ with no assumption on the primes of R . Instead we suppose that R has no nonzero nil ideals. Recall that the monomials in $R * U(L)$ are well ordered. If $\alpha = \sum a_{\mu} \mu \in R * U(L)$ and if σ is the largest monomial in its support, we say that σ is the monomial degree of α and that a_{α} is its leading coefficient.

LEMMA 3.6. Let $\alpha \in R * U(L)$ be invertible with $\deg \alpha \geq 1$. If the leading *coefficient* a_{σ} *commutes with* α , then a_{σ} is nilpotent.

PROOF. Write $a = a_{\sigma}$. Since α is invertible there exists β with $\alpha\beta = 1 = a^0$. Now choose γ of minimal support size such that $\alpha \gamma = a^n$ for some n. If $\gamma \neq 0$ let $c_{\tau}\tau$ be its leading term. Since deg $\sigma = \deg \alpha \geq 1$ and $a^n \in R$, we have $ac_{\tau} =$ $a_{\sigma}c_{\tau} = 0$. Hence since $a\alpha = \alpha a$,

$$
a^{n+1}=a(\alpha\gamma)=\alpha(a\gamma).
$$

But $a\gamma$ has smaller support than γ , a contradiction. We conclude that $\gamma = 0$ and therefore that $a^n = 0$.

PROPOSITION 3.7. *Let R • U(L) be given and assume that R has no nonzero nil ideals, If* $J(R * U(L)) \neq 0$, then $R \cap J(R * U(L)) \neq 0$.

PROOF. Assume that the smallest monomial degree of any nonzero element of $J(R * U(L))$ is σ . If A is the set of σ -coefficients of all elements $\alpha \in$ $J(R * U(L))$ with mon-deg $\alpha \leq \sigma$, then A is clearly a nonzero two-sided ideal of *R*. If $\sigma = 1$, then $R \cap J(R * U(L)) = A \neq 0$ as required.

Suppose by way of contradiction that $\sigma \neq 1$ so deg $\sigma \geq 1$. Let $0 \neq a \in A$ and let $\alpha \in J(R * U(L))$ with leading coefficient $a = a_{\alpha}$. Then $a\alpha - \alpha a \in$ $J(R * U(L))$ has monomial degree smaller than σ so $a\alpha - \alpha a = 0$. Since deg $\sigma \geq 1$, $1 + \alpha$ also has leading coefficient $a = a_{\sigma}$ and $1 + \alpha$ is invertible. It follows from Lemma 3.6 that a is nilpotent. Thus A is a nonzero nil ideal of R , a contradiction.

The following is well known so we only sketch its proof.

LEMMA 3.8. Let L' be a Lie subalgebra of L. Then

 $J(R * U(L)) \cap R * U(L') \subseteq J(R * U(L'))$.

PROOF. By extending a well ordered K-basis of L' to one of L we deduce from the Poincaré-Birkhoff-Witt theorem that

$$
R * U(L) = R * U(L') \oplus C
$$

where C is a complementary left $R * U(L')$ -module. This then implies that if

 $\alpha \in R * U(L')$ is invertible in $R * U(L)$, then it is invertible in $R * U(L')$. With this we see that $J(R * U(L)) \cap R * U(L')$ is a quasi-regular ideal of $R * U(L')$ and hence contained in its Jacobson radical.

We can now prove

THEOREM 3.9. *Let R • U(L) be given and assume that R has no nonzero nil ideal. If either*

(i) *JR contains no nonzero L-stable ideal, or*

(ii) *some* $0 \neq x \in L$ *acts as an inner derivation on R, then* $J(R * U(L)) = 0$.

PROOF. Assume by way of contradiction that $J(R * U(L)) \neq 0$. Then by Proposition 3.7, $A = R \cap J(R * U(L)) \neq 0$ and certainly A is an L-stable ideal of R. By Lemma 3.8 with $L' = 0$ we have $A \subseteq JR$. Hence if (i) is satisfied we have an appropriate contradiction.

Assume (ii) holds and let $0 \neq x \in L$ act like the inner derivation induced by $b \in R$ and set $L' = Kx$. Then by Lemma 3.8,

$$
A \subseteq J(R * U(L)) \cap R * U(L') \subseteq J(R * U(L')).
$$

Let $a \in A$. Then $a(\bar{x}-b) \in J(R * U(L'))$ so $1 + a(\bar{x}-b)$ is invertible in $R * U(L')$. But $\bar{x} - b$ acts trivially on R so a commutes with $1 + a(\bar{x} - b)$. It follows from Lemma 3.6 that a is nilpotent and hence that A is nil, a contradiction.

COROLLARY 3.10. *Let* $R * U(L)$ *be given with char* $K = 0$. *Then*

$$
J(R * U(L)) \subseteq M * U(L)
$$

where *M* is the largest *L*-invariant ideal in JR. Furthermore if some $0 \neq x \in L$ *acts as an inner derivation on R, then*

$$
J(R * U(L)) \subseteq N * U(L)
$$

where N is the nil radical of R.

PROOF. For the first part it suffices to show that

$$
R * U(L)/M * U(L) = (R/M) * U(L)
$$

is semiprimitive. Hence since $M \subseteq JR$ we can assume, replacing R by R/M , that *JR* contains no nonzero L-stable ideal. But the nil radical is L-stable, by

Lemma 1.1(i), so we conclude that R has no nonzero nil ideals and Theorem 3.9(i) yields the result.

For the second part we note that N is L-stable, by Lemma 1.1, and therefore it suffices to show that

$$
R * U(L)/N * U(L) = (R/N) * U(L)
$$

is semiprimitive. But *R/N* has no nonzero nil ideals and some $0 \neq x \in L$ acts as an inner derivation on *R/N* so, this time, Theorem 3.9(ii) yields the result.

It is quite possible that the second part of the above holds with only the assumption that char $K = 0$ and $L \neq 0$. In view of the proof of Theorem 3.9(ii), this problem reduces to showing that $J(R[x; \delta]) \cap R$ is nil for any Ore extension $R[x; \delta]$. The equations involved in a potential proof of this fact seem to be quite complicated. We close with one such which is interesting but certainly not readily useful.

LEMMA 3.11. Let $a \in J(R[x;\delta]) \cap R$ and define a_i inductively by $a_1 = a$ *and* $a_{i+1} = (1 + \delta(a_i))^{-1} a_i$ *. Then* $a_1 a_2 \cdots a_n = 0$ for some $n \ge 1$.

PROOF. Note first that $A = J(R[x;\delta]) \cap R$ is a δ -stable ideal of R contained in *JR*, by Lemma 3.8. With this we see that the sequence a_1, a_2, a_3, \ldots in A is well defined. Indeed, by induction, since $a_i \in A$ we have $\delta(a_i) \in A \subseteq JR$ so $(1 + \delta(a_i))^{-1} \in R$ exists and $a_{i+1} = (1 + \delta(a_i))^{-1}a_i \in A$. For convenience set $c_n = a_1 a_2 \cdots a_{n-1}$ with $c_1 = 1$. Since $a \in J(R[x; \delta])$, $1 + ax$ is invertible and there exists β with $\beta(1 + ax) = 1$ or, in other words, $\beta(1 + a_1x) = c_1$.

We can now choose β of minimal degree with $\beta(1 + a_n x) = c_n$ for some $n \ge 1$. If $\beta \ne 0$, let b be its leading coefficient so that clearly $ba_n = 0$. Now

$$
c_{n+1} = c_n a_n = \beta (1 + a_n x) a_n = \beta a_n (1 + x a_n)
$$

= $\beta a_n (1 + \delta(a_n) + a_n x)$
= $\beta a_n (1 + \delta(a_n)) \cdot (1 + a_{n+1} x).$

But $ba_n = 0$ implies that $\deg \beta a_n(1 + \delta(a_n)) < \deg \beta$, a contradiction. Thus $\beta = 0$ and $c_n = 0$.

Notice that each a_i and hence each $a_1a_2 \cdots a_n$ is a product of a's with units interspersed. Thus if R is commutative we obtain the known result that $J(R[x; \delta]) \cap R$ is nil.

REFERENCES

1. **S. A.** Amitsur, *NilPl-rings,* Proc. Am. Math. **Soc. 2** (1951), 538-540.

2. S. A. Amitsur, *Radicals of polynomial rings,* Can. J. Math. 8 (t956), 355-361.

3. E. Behr, *Jacobson radicals offiltered algebras,* Proc. Am. Math. Soc. 98 (1986), 595-546.

4. J. Bergen and S. Montgomery, *Smash products and outer derivations,* Isr. J. Math. 53 (1986), 321-345.

5. W. Chin, *Prime ideals in differential operator rings and crossed products of infinite groups,* J. Algebra 106 (1987), 78-104.

6. M. Ferrero and K. Kishimoto, *On differential rings and skew polynomials,* Commun. Algebra 13 (1985), 285-304.

7. M. Ferrero, K. Kishimoto and K. Morose, *On radicals of skew polynomial rings of derivation type,* J. London Math. Soc. (2) 28 (1983), 8-16.

8. K. R. Goodearl and R. B. Wartield, *Primitivity in differential operator rings,* Math. Z. 180 (1982), 503-523.

9. I. N. Herstein, *Rings with Involution,* Univ. of Chicago Press, Chicago, 1976.

10. R. S. Irving, *Primitive ideals of enveloping algebras over commutative rings,* Am. J. Math. 106 (1984), 113-135.

1 I. D. A. Jordan, *Noetherian Ore extensions andJacobson rings,* J. London Math. Soc. (2) 10 (1975), 281-291.

12. J. C. McConnell and J. C. Robson, *Noncommutative Noetherian Rings,* Wiley, New York, 1988.

13. K. R. Pearson and W. Stephenson, *A skew polynomial ring over a Jacobson ring need not be a Jacobson ring,* Commun. Algebra 5 (1977), 783-794.

14. M. K. Smith, *Universal enveloping algebras with subexponential but not polynomially bounded growth,* Proc. Am. Math. Soc. 60 (1976), 22-24.